Matematika diketahui fungsi f:R -> R dan g:R->R dirumuskan dengan f(X)= 2X + 3 dan g(x)= 7X - 1 , maka (go F) (-4)=....
A.36
B.18
C.9
D.- 18
E.- 36​

diketahui fungsi f:R -> R dan g:R->R dirumuskan dengan f(X)= 2X + 3 dan g(x)= 7X - 1 , maka (go F) (-4)=....
A.36
B.18
C.9
D.- 18
E.- 36​

[tex] \mathbb \color{aqua} \underbrace{JAWABAN}[/tex]

E. -36

------------------

[tex] \mathbb \color{orange} \underbrace{PENYELESAIAN}[/tex]

[tex] \underline{ \overline{ \boxed{ \bold{diketahui}}}}[/tex]

  • f(x) = 2x + 3
  • g(x) = 7x - 1

[tex] \\ \underline{ \overline{ \boxed{ \bold{ditanya}}}}[/tex]

  • (g o f)(-4)

[tex] \\ \underline{ \overline{ \boxed{ \bold{jawab}}}}[/tex]

[tex] \begin{aligned} \sf (g \circ f)(x) & = \sf g(f(x)) \\ \sf (g \circ f)(x) & = \sf g(2x + 3) \\ \sf (g \circ f)(x) & = \sf 7(2x + 3) - 1 \\ \sf (g \circ f)(x) & = \sf 14x + 21 - 1 \\ \sf (g \circ f)(x) & = \sf 14x + 20 \\ \sf (g \circ f)( - 4) & = \sf 14( - 4) + 20 \\ \sf (g \circ f)( - 4) & = \sf - 56 + 20 \\ \sf (g \circ f)( - 4) & = \bold{ - 36} \end{aligned}[/tex]

[tex] \\ \\ \huge \color{lightgreen} \xrightarrow \textsf{\textbf{cara lain : }} \\ \\ [/tex]

[tex] \begin{aligned} \sf (g \circ f)( - 4) & = \sf g(f( - 4)) \\ \sf (g \circ f)( - 4) & = \sf g(2( - 4) + 3) \\ \sf (g \circ f)( - 4) & = \sf g( - 8 + 3) \\ \sf (g \circ f)( - 4) & = \sf g( - 5) \\ \sf (g \circ f)( - 4) & = \sf 7( - 5) - 1 \\ \sf (g \circ f)( - 4) & = \sf - 35 - 1 \\ \sf (g \circ f)( - 4) & = \bold{ - 36 }\end{aligned}[/tex]

------------------

[tex] \mathbb \color{red} \underbrace{KESIMPULAN}[/tex]

Jadi, nilai (g o f)(-4) adalah -36

[tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex]

[answer.2.content]